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Summary. The joint durum wheat (Triticum turgidum L 
var 'durum') breeding program of the International Maize 
and Wheat Improvement Center (CIMMYT) and the 
International Center for Agricultural Research in the 
Dry Areas (ICARDA) for the Mediterranean region 
employs extensive multilocation testing. Multilocation 
testing produces significant genotype-environment (GE) 
interaction that reduces the accuracy for estimating 
yield and selecting appropriate germ plasm. The sum of 
squares (SS) of GE interaction was partitioned by linear 
regression techniques into joint, genotypic, and environ- 
mental regressions, and by Additive Main effects and the 
Multiplicative Interactions (AMMI) model into five sig- 
nificant Interaction Principal Component Axes (IPCA). 
The AMMI model was more effective in partitioning the 
interaction SS than the linear regression technique. The 
SS contained in the AMMI model was 6 times higher 
than the SS for all three regressions. Postdictive assess- 
ment recommended the use of the first five IPCA axes, 
while predictive assessment AMMI1 (main effects plus 
IPCA 1). After elimination of random variation, AMMI I 
estimates for genotypic yields within sites were more pre- 
cise than unadjusted means. This increased precision was 
equivalent to increasing the number of replications by a 
factor of 3.7. 
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Introduction 

High and stable yielding germ plasm with stress resis- 
tance and good grain quality is the main objective of 
CIMMYT and ICARDA joint Durum Wheat Breeding 
Program in the Mediterranean region. In this region the 
selection of suitable germ plasm is conducted with the 
durum wheat research programs of western Asia, north- 
ern Africa, and sourthern Europe. 

The testing of Regional Durum Wheat Yield Trials 
for Moderate Rainfall areas (RDYT-MR) is carried out 
over a wide range of variable environments. Environ- 
mental variation causes differential genotypic responses 
that result in rank changes of genotypes. Genotype-envi- 
ronment (GE) interaction for the Mediterranean multilo- 
cation trials shows large variation (Nachit 1986). The 
large GE variation usually impairs the accuracy of yield 
estimation and reduces the relationship between geno- 
typic and phenotypic values. 

The predictive accuracy of yield estimate is achieved 
by improving experimental field techniques, by increas- 
ing the number of replications or by using a more sophis- 
ticated layout of replications, or by using better statisti- 
cal analysis for GE partition and interpretation. The 
latter option offers considerable effectiveness in cost and 
accuracy of genotypic yield estimate (Gauch and Zobel 
1988, 1989). 

Partitioning and interpretation the GE interaction is 
generally based on linear regression techniques (Finlay 
and Wilkinson 1963; Eberhard and Russell 1966) or 
multivariate analyses (Kempton 1984; Gauch 1988; 
Zobel et al. 1988). The linear regression techniques, how- 
ever, have shown several deficiencies; for example, con- 
founding of interaction and main effects (Wright 1971) 
and non-linear genotypic response to the environments 
(Nachit 1986). However, multivariate techniques such as 
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the additive main effects and mutliplicative interaction 
(AMMI)  procedure with prediction assessment can be 
powerful in analyzing multilocation trials (Gauch 1988; 
Gauch and Zobel 1988). The A M M I  model integrates 
the usual additive analysis of  variance (ANOVA) for the 
additive effects with the principal components analysis 
(PCA) for the multiplicative effects (Gauch and Zobel 
1990). The additive main effects are first extracted from 
the analysis, and then the principal components analysis 
is used to investigate the GE interaction. 

The A M M I  model uses two procedures to determine 
the number of  Interaction Principal Components Axes 
(IPCA) to include in the analysis: postdictive and predic- 
tive assessment. The postdictive assessment uses the 
IPCA variation to identify the significant axes, while the 
predictive assessment uses the cross-validation technique 
to identify the axis with the most accurate yield estimates. 
Yield estimates of  the predictive assessment are produced 
by adjusting the treatment's means through discarding 
the residual termed non-pattern variation or noise 
(Gauch 1990). The A M M I  predictive assessment splits 
the data of  the replications into two parts, one part  for 
model fitting and the other part  for model validation 
(Gauch and Zobel 1988). The sum of the squared differ- 
ences between the model's fitted values and validation 
data over genotypes and environments is divided by the 
number of  validation observations, and its square root is 
taken to give the Root Mean Square Predictive Differ- 
ence (RMS PD). Smaller values of  RMS PD indicate 
good predictive success. 

The objective of  this study was to: (1) determine and 
compare the amounts of  GE interaction using the A M M I  
model and linear regression technique, and (2) apply the 
A M M I  predictive accuracy assessment to estimate geno- 
type yields. 

Materials and methods 

The multilocation Regional Durum Wheat Yield Trial for Mod- 
erate Rainfall areas (RDYT-MR) of the 1986/87 season had 21 
durum wheat genotypes (Table 1) grown in 22 Mediterranean 
sites (Table 2). A randomized complete block design with three 
replications was used in each site. The test plot consisted of 
six rows 3 m long sown 0.25 m apart at a sowing rate of 
100 kg ha -1. The central four rows with a length of 2.5 m were 
harvested. Grain yield is expressed in kg ha- 1. The variable local 
checks of the sites were excluded from the analysis. 

The equations of the additive main effects and multiplicative 
interaction (AMMI) model (Gaueh 1988) and the related models 
of analysis of variance (ANOVA), principal components analysis 
(PCA), and concurrence or joint linear regression (Tukey 1949; 
Finlay and Wilkinson 1963) used in the statistical analysis of 
yields for RDYT-MR are given below. 

The analysis of variance model (ANOVA) is 

Yge = [A-l-%-b fle q-Qge ; (1) 

the linear regression model (LR) is 

Vg~ = p+c%+fi~+K %/~+~g fi~ + t/o %+0ge ; (2) 

Table 1. Grain yield across-sites for 21 durum wheat genotypes 
of the RDYT-MR for 1987 in 22 sites 

Code Name or cross Grain yield 
(kg ha- 1) 

1 Stork 3,830 
2 CD20632/02SPSelAp 3,993 
3 CD24831AdSelAp 4,006 
4 Oronte 6 4,126 
5 CD6118SPSelAp 3,756 
6 Scoflag 4,247 
7 Sajur 3,954 
8 Belikh 2 3,963 
9 Ain Arous 1 3,942 

10 Karasu 3,810 
11 CD10549AdSelAp 3,870 
12 Chain 1 4,058 
13 Om Rabi 11 3,762 
14 Amst 1 3,746 
15 Cd20632/15SPSelAp 4,024 
16 Sebou 3,952 
17 ICD-79-0246 4,014 
18 Oronte 1 3,874 
19 CD26701SPSelAp 3,978 
20 Korifla 3,940 
21 Sabil 1 3,885 

Table 2. Yields and geographical parameters of 22 sites where 21 
durum wheat genotypes of RDYT-MR for 1987 were grown 

Site, country Grain yield Latitude Altitude 
(kg ha- 1) (ON) (masl) 

Santa Engarcia, Spain 5,981 40.0 490 
Jerez, Spain 5,334 36.4 20 
Settat, Morocco 859 32.5 350 
Marchouche, Morocco 3,640 33.3 400 
Douyete, Morocco 3,340 35.2 500 
Sidi Belabbes, Algeria 3,406 35.1 486 
Beja, Tunisia 4,570 37.0 165 
Kef, Tunisia 5,952 36.1 35 
Khroub, Algeria 6,079 36.2 645 
Viterbo, Italy 3,373 42.2 300 
Marj, Lybia 4,695 30.3 310 
Tessaloniki, Greece 3,696 40.4 10 
Izmir, Turkey 6,674 38.3 20 
Rainfed-Tll, Syria 3,599 36.0 282 
Breda, Syria 1,248 35.6 300 
Early Planting, Syria 3,053 36.0 282 
Late Planting, Syria 872 36.0 282 
Jeleen, Syria 5,329 32.4 421 
Terbol, Lebanon 5,614 33.5 890 
Tel Amara, Lebanon 3,837 33.6 950 
Ramtha, Jordan 2,000 32.4 650 
Irbid, Jordan 3,520 32.3 618 

the principal components analysis model (PCA) is 
N 

Yg~ = #+  Y 2. 7g~ 6~+0g~ ; 
n= l  

and the AMMI model is 
N 

Yge = / ~ q - % - b f l e q -  ~ 2n3Jgn~en-b~ge . 
n= l  

(3) 

(4) 
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In the ANOVA, LR, and AMMI models (Eqs. 1, 2, and 4), 
Yge is the grain yield of genotype g in environment e ; / ,  is the 
grand mean; eg is the genotype mean deviation; ]~e is the envi- 
ronment mean deviation; and 0ge, the respective residual. In LR 
(Eq. 2), K is the Tukey concurrence constant; ~zg is the genotype 
slope on the environment means; and t/o is the environment 
slope on the genotype means. The LR techniques partitioned the 
GE interaction (Table 3) into joint (Keg/~e), genotypic (~g/~), 
and environmental regression (r/~ %), and a residual term (0ge). 

In PCA (Eq. 3), 2 n is the square root of the eigenvalue of the 
principal component axis n; ?'gn and fen are the genotype and 
environment PCA values, respectively for the axis n; N is the 
number of PCA axes retained in the model and ~og e is the resid- 
ual. The sum of the deviations of c~ and/~ is equal to zero (S e = 
2;/~ = 0), and the 7 and 6 eigenvector values for each PCA axis 
are scaled to unit vectors such that 2; 72 = S 15 2 = 1. The eigen- 
value for a given PCA axis is the sum of squares (SS) accounted 
for by that axis, and it equals 22 (Gauch and Zobel 1989). 

For an AMMI model, the sum of the eigenvalues (27 ~2) for 
N axes and the residual SS (Qgo) for a reduced model equals the 
GE interaction SS. The condensation of most of the GE interac- 
tion in a few interaction principal components (IPCA) axes 
(n = 1-3) results in a reduced AMMI model with a residual term 
(0g~); 0ge is of course different for each of these different models. 
However, when the experiment has more than one replication, 
an error term (%or) is added to the above-mentioned equations: 
Y~or = Yge q-~ger" The degrees of freedom (d J) for the IPCA axes 
are calculated according to Gollob's method (1968): df= G +  
E - l - 2 n  for axis n. 

The additive part of the AMMI model (#, ~g, and /~o) is 
estimated first with ANOVA (Eq. 1), and the multiplicative part 
(2n, 7gn, and 6~n ) is estimated with the PCA (Eq. 3) to explain the 
pattern in GE interaction (Gauch and Zobel 1989). The direct 
estimation of GE interaction is generated by the multiplication 
of a genotype IPCA score (2 ~ Vg,) by an environment IPCA 
score (2 o.5 c~,). 

The inclusion of the number of axes is assessed by two 
procedures: the postdictive and predictive assessment. The post- 
dictive assessment uses F-tests for each IPCA axis (Gauch 1988). 
Those IPCA axes that are not significant at 0.05 probability level 
are pooled into the residual term (Table 4). Whereas, the predic- 
tive assessment is determined by data splitting (Gauch and 
Zobel 1988): the data are divided at random into two parts, 
using one part of the data for model fitting (construction) and the 
other part for validation. For each combination of genotype and 
environment in RDYT-MR, two randomly selected replications 
were used to construct the AMMI fitting model, and the remain- 
ing replication was used to validate it. Consequently, the RDYT- 
MR trial had 21 x 22 x 2 =924 yield observations for fitting the 
model and 21 x 2 2 x  1 =462 yield observations for validation 
(Table 6). 

To select the optimal number of axes to retain in the predictive 
assessment, cross-validation techniques were applied (Wold 1978; 
Krzanowski 1983). The cross-validation was used as follows: the 
differences between the prediction values (model's fitted values) 
and validation observations were first squared and summed over 
all genotypes and environments and divided by the number of 
validation observations, and then its squared root was taken to 
compute the Root Mean Square of the Predictive Difference 
(RMS PD). The squared root difference between the mean 
squares of prediction difference [(RMS PD) z] and fitting model 
error [(RMS FE) 2] was used to estimate the prediction error 
[(RMS PE)2]. Smaller values of RMS PD indicate good predic- 
tive success (Table 5). The average RMS PD values were initially 
based upon 5, 10, 25, 50, 100 and 200 different random splittings. 
The results showed that for 462 validation observations, 25 ran- 
dom validation runs were adequate in this instance (Table 5). 

Table 3. Pooled analysis of variance of grain yield (kg ha-  1) for 
21 genotypes grown at 22 sites in 1987 

Source of variation df Sum of Mean 
squares squares 
(x  10 5) (x  10 5) 

Total 1,385 47,767.72 34.49 
Treatments 461 42,340.72 91.84 ** 
Genotypes (G) 20 204.33 10.22 ** 
Environments (E) 21 37,819.56 1,800.93 ** 
GE 420 4,316.84 10.28 ** 

Joint regression 1 41.61 41.61 ** 
G regression 19 178.52 9.31 * 
E regression 20 223.47 11.17 ** 
Residual 380 3,873.23 10.19 ** 

Error 924 5,426.99 5.87 

*, ** Significant at the 0.05 and 0.01 probability levels, respec- 
tively 
Trial mean: 3,940 kg ha-1;  coefficient of variation (%): 19.4 

Table 4. AMMI partition of GE interaction for grain yield 
(kg ha -1) of 21 genotypes grown at 22 sites in J987 

Source of variation df Sum of Mean 
squares squares 
(x  10 5) (x  10 5) 

Genotypes (G) 20 204.33 10.22 ** 
Environments (E) 21 37,819.56 1,800.93 ** 
GE 420 4,316.84 10.28 ** 

IPCA1 40 i ,669.74 41.74 ** 
IPCA2 38 639.55 16.83"* 
IPCA 3 36 384.42 10.67"* 
IPCA4 34 343.12 10.09"* 
IPCA 5 32 279.82 8.74 * 
IPCA 6 30 212.65 7.09 
IPCA7 28 203.96 7.28 
Residual 182 583.57 3.20 

Error 924 5,426.99 5.87 

*, ** Significant at the 0.05 and 0.01 probability levels, respec- 
tively 
Trial mean: 3,940 kg ha-  1 ; coefficient of variation (%): 19.4 

Various AMMI models using zero to five IPCA can be 
compared in terms of their predictive success by observing 
RMS PD (Gauch and Zobel 1988; Gauch and Zobel 1989). The 
smallest RMS PD value is related to the best predictive AMMI 
model. After its selection, the best AMMI model is used to 
analyze the data, including all replications. Six models were 
fitted to the data (Table 5): the first was the additive model 
(AMMI0), which estimated the additive main effect (genotypes 
and environments) and has n equal to zero; i.e., it retains none 
of the IPCA axes and does not considers the GE interaction. 
Consequently, the genotype ranking of the AMMI 0 model is the 
same at each site. The second model is AMMI1, which combines 
the additive main effect from A M M I 0  with the GE interaction 
effect from the first principal component axis (IPCA1) and rele- 
gates the rest to the residual (Crossa et al. 1990). The third 
model, AMMI 2, considers main effects plus two IPCA. AMMI 3 
to AMMI 5 models include, sequentially, one more IPCA each. 
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The yield estimates from the full model (AMMI F) are identical 
to the mean of the two replications selected at random for model 
fitting (Gauch 1990). 

The approximate number of replications (rAMMn) needed for 
the AMMI F model to equal the performance of AMMI 1 was 
estimated as follows (Table 6): [RMS FE/RMS PE] 2. The ap- 
proximate gain factor (GF) from the AMMI model used is calcu- 
lated by dividing the number of replications (rAMMn) by the 
number of the replications used in the fit model (rein). Additional 
replications benefit (RB) from using AMMI1 is (rAMMn--rfm) 
and additional observation benefit (AO) is (RB x G x E). 

Results and discussion 

Comparison between linear regression and A M M I  model 

The analysis of variance showed that  the mean squares of 
environments,  genotypes, and G E  interact ion were highly 
significant (Tables 3 and 4) and accounted for 89.3%, 
0.5%, and 10.2% of the t reatment  combinat ions  SS, re- 
spectively. The G E  interact ion was analyzed (Tables 3 
and 4) using two methods:  the linear regression technique 
and the A M M I  model. The regression technique part i-  
t ioned the SS of GE interact ion into joint,  genotypic, and 
environmental regressions (Table 3), whereas the A M M I  
model  par t i t ioned the SS of G E  interact ion into seven 
interaction principal  components  axes (IPCA), of which 
the first five IPCA were significant (Table 4). 

The SS of all three regressions accounted for 10.3% of 
the G E  interactions SS (1.0% for the joint  regression, 
4.1% for the genotypic regression, and 5.2% for the envi- 
ronmental  regression), and the remaining 89.7% was 
accounted for by the SS of the regression residual. As for 
the A M M I  model, 76.8% was accounted for by the five 
significant IPCA axes and 23.2% by the IPCA residual. 
Of the five significant IPCA axes, I P C A I  accounted for 
38.7% of the GE interaction SS in 9.5% of the interact ion 
df, and I P C A 2  14.8% in 9.0% of  the df(Table 5). IPCA3,  
4, and 5 captured from the GE interaction SS 8.9%, 
7.9%, and 6.5%, respectively, and from the interact ion df 
8.6%, 8.1%, and 7.6%, respectively. 

The SS of  the first five significant IPCA axes ( I P C A 1 -  
IPCA 5) and the SS of  I P C A I  were higher than the com- 
bined SS of  all three regressions by 7.5 and 3.8 fold, 
respectively. These results demonstra te  the effectiveness 
of  the A M M I  model  in capturing and par t i t ioning the SS 
of  GE interact ion in compar ison to the linear regression 

technique. 

Postdictive and predictive assessments 

The A M M I 1  patterns (Table 6) related to the treatments 
accounted for 93.6% of  the treatments SS, with 81 df(20 
for genotypes, I for environments,  and 40 for IPCA1),  
and 6.4% of  the non-predictive random variat ion SS 
(noise), with 380 df. The A M M I  model  discards the non- 
interpretable r andom variat ion (noise) and uses then 

Table 5. Average RMS PD for seven AMMI models based on 
yield (kg ha-  1) 

Model RMS PD 

AMMI0 859.9 
AMMI 1 830.5 b 
AMMI2 884.6 
AMMI 3 910.3 
AMMI4 920.1 
AMMI 5 925.1 
AMMIF"  941.1 

" Full model based on all genotype-environment combinations 
b Selected AMMI model based on predictive assessment 

Table 6. Estimates for parameters of AMMI predictive assess- 
ment for grain yield (kg ha-  1) of 21 genotypes grown at 22 sites 
in 1987 

Parameters Estimate 

Pattern and noise 
Pattern 93.6% 
Random variation 6.4% 
RMS of discarded residual (RMS DR) 442.0 kg ha-  1 
RMS DR relative to grand mean 11.2% 

Model assessment 
Postdictive model 5 
Postdictive df 221 
Number of validation runs 25 
Predictive model AMMI 1 
Predictive df 81 
Parsimony 2.7 

Prediction 
Fitting model observations 
Validation observations 
RMS of predictive difference (RMS PD) 
RMS of fitting model error (RMS FE) 
RMS of prediction error (RMS PE) 
RMS PE relative to grand mean 

AMMI gain 

rAMMl 5.7 
Replications benefit (RB) 3.7 
Additional observations (AO) 1,725 
Gain factor (GF) 2.9 

924 
462 
830.5 kgha 1 
766.4 kg ha-  1 
320.1 kgha -1 

8.1% 

Table 7. Percentage for rank differences (%) between AMMI 1 
model and unadjusted yield means for grain yield (kg ha-  1) of 
21 genotypes grown at 22 sites in 1987 

Number of rank Percentage of rank 
difference difference 

0 8.2 
1 14.7 
2 13.9 
3 13.2 
4 6.7 
5 7.1 
Remaining 36.2 
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information from all test genotypes and environments 
to identify the trial functional patterns. It also adjusts 
the genotypic estimates within a site. The estimates of  
A M M I  consist of  interpretable and predictable inherent 
patterns, while the treatments means consist of  both pre- 
dictable patterns and non-predictable random variation. 
Therefore, A M M I  estimates are more predictive than 
treatment means (Gauch and Zobel 1988). 

The criterion of  postdictive success for the A M M I  
model identified the first five IPCA axes in the model 
(Table 4), whereas the predictive assessment, measured 
by the RMS PD procedure (Table 5), selected the AMMI1 
model (genotypic and environmental main effects plus 
IPCAI) .  In general, the model chosen by predictive 
criterion consists of  fewer interaction principal compo- 
nents and uses fewer d f t h a n  the model chosen by post- 
dictive criteria. The lowest deviation (RMS PD) from the 
validation data for the A M M I I  model (Table 5) was 
830.5 kg h a -  1. The mean square of  the prediction error 
(MS PE) expressed in terms of  its square root  was 
320.1 kg h a -  1 (Table 6). This represents an error of  8.1% 
relative to the yield grand mean for R D Y T - M R  (4,002 kg 
ha-1).  The estimate of  predictive criterion (AMMI1) used 
81 df, while the postdictive criterion (equals A M M I  5) 
used 221 df. Thus, the A M M I I  model is 2.7 times as 
parsimonious as A M M I  5 (Table 6). 

The approximate number (rAMMI1) of  replications 
needed for the A M M I  F model to equal the performance 
of  AMMI1  was 5.7. Therefore, A M M I I  based on 2 repli- 
cations is as precise as the full model (AMMI  F) based on 
5.3 replications. A M M I I  had a theoretical gain factor 
(GF) in precision of  2.9. The replication benefit from the 
use of  the AMMI1  model was 3.7 additional replications, 
or 1,725 additional observations' (plots) benefit (Table 6). 

The ranking of  genotypes in each environment in the 
AMMI1 model was different f rom that of  the A M M I  F 
model (Table 7). Similar results have been found in soy- 
bean (Gauch and Zobel 1989), maize (Crossa et al. 1990), 
and bread wheat (Crossa et al. 1991). Since precise yield 
estimates are imperative to make successful selections, 
the use of  A M M I I  rankings merits serious consideration 
(Gauch and Zobel 1989). The ranking difference (Table 7) 
between actual genotypes' means and the AMMI1 model 
were similar in 8.2% of  the total genotype x environ- 
ments combinations, different by one rank in 14.7%, by 
two ranks in 13.9%, by three ranks in 13.2%, by four 
ranks in 6.7%, and by five ranks in 7.1%. The remaining 
differential rankings (six and above) represented 36.2% 
of  the total genotype x environments combinations. 

The results of  the R D Y T - M R  in the Mediterranean 
multilocational testing show that the postdictive A M M I  
models are superior to the linear regression techniques in 
accounting for and partitioning GE interaction. In addi- 
tion, the predictive assessment demonstrated its useful- 
ness as a statistical tool in estimating precise yield to 
make accurate and therefore successful selection. 
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